Mh4718 Worksheet 4

1. Which of the following can be stored exactly as floats?:
$\begin{array}{lllll}\text { (i) } 0.12356, & \text { (ii) } 10^{-6}, & \text { (iii) } 0.015625, & \text { (iv) } 0.109375 & \text { (v) } \frac{6}{192}\end{array}$
(vi) $\frac{3}{124}$ (vii) $\frac{1}{16}$, (viii) 0.0038762322 . (vi) $2^{25}+2$.
2. (i) $=7^{\wedge} 18$ is entered into a cell in an Excel spreadsheet.

The cell is formatted to dispay a number with 0 decimal places.
The value displayed is 1628413597910450 .
Explain how we know that the number displayed is not equal to 7^{18} without directly calculating 7^{18} and explain why Excel does not display the exact value.
(ii) $=7^{\wedge} 17 / 5^{\wedge} 3$ is entered into a cell in an Excel spreadsheet.

The cell is formatted to dispay a number with 3 decimal places.
The value displayed is 1861044111897.660
Explain how we know that the number displayed is not equal to $\frac{7^{17}}{5^{3}}$ without directly calculating $\frac{7^{17}}{5^{3}}$ by some other means. and explain why Excel does not display the exact value.

